
AMR Godunov Unsplit Algorithm and

Implementation

P. Colella
D. T. Graves
T. J. Ligocki

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

July 8, 2003

Contents

1 Algorithm 2

1.1 Notation . 2
1.2 Multidimensional higher-order Godunov method 3

1.2.1 Outline . 3
1.2.2 Slope Calculation . 5

2 Interface 7

2.1 Class Hierarchy . 7
2.1.1 Class AMRLevel<name> . 7
2.1.2 Class LevelGodunov . 9
2.1.3 Class PatchGodunov . 10
2.1.4 Class PhysIBC . 17

1

Chapter 1

Algorithm

This section describes the numerical method for integrating systems of conservation laws
(e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy. This is done using
an unsplit, second-order Godunov method.

1.1 Notation

Most of the notation used here is introduced in the Chombo design document [CGL+00].
The main exception to that is a notation using | symbols. For computations at cell centers
the notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

2

1.2 Multidimensional higher-order Godunov method

The methods developed here have their origins in Colella [Col90] and Saltzman [Sal94].
We are solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S

We also assume there may be a change of variables W = W (U) (W ≡ “primitive
variables”) that can be applied to simplify the calculation of the characteristic structure
of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W)
∂W d

∂xd
= S ′

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

Note, this system is not in conservation form as the primitive variables, in general, are
not conserved quantities.

1.2.1 Outline

Given Un
i
and Sn

i
, we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2

i+ 1

2
ed
≈ F d(x0 + (i +

1
2
e
d)h, tn + 1

2
∆t). The transformations ∇UW and ∇WU are

functions of both space and time. We shall leave the precise centering of these transfor-
mations vague as this will be application dependent. In outline, the method is given as
follows.

1. Transform to primitive variables, and compute slopes (the definition of ∆dWi is
given in section 1.2.2):

Given W n
i
= W (Un

i
), compute ∆dWi, for 0 ≤ d < D

2. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wi,±,d = W n
i
+
1

2
(±I −

∆t

h
Ad

i
)P±(∆

dWi) (1.1)

Ad
i
= Ad(Wi)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wi,±,d = Wi,±,d +
∆t

2
∇UW · Sn

i
(1.2)

3

where λk are eigenvalues of A
d
i
, and lk and rk are the corresponding left and right

eigenvectors.

3. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB. Here, and in what
follows, ∇UW need only be first-order accurate, e.g., differ from the value at Un

i

by O(h).

F 1D

i+ 1

2
ed
= R(Wi,+,d,Wi+ed,−,d, d)

| RB(Wi,+,d, (i+
1

2
e
d)h, d)

| RB(Wi+ed,−,d, (i+
1

2
e
d)h, d)

(1.3)

4. In 3D compute corrections to Wi,±,d corresponding to one set of transverse deriva-
tives appropriate to obtain (1, 1, 1) diagonal coupling. In 2D skip this step.

Wi,±,d1,d2
= Wi,±,d1

−
∆t

3h
∇UW · (F 1D

i+ 1

2
ed2
− F 1D

i− 1

2
ed2
) (1.4)

5. In 3D compute fluxes corresponding to corrections made in the previous step. In
2D skip this step.

F
i+ 1

2
ed1 ,d2

= R(Wi,+,d1,d2
,Wi+ed1 ,−,d1,d2

, d1)

| RB(Wi,+,d1,d2
, (i+

1

2
e
d1)h, d1)

| RB(Wi+ed1 ,−,d1,d2
, (i+

1

2
e
d1)h, d1)

(1.5)

d1 6= d2, 0 ≤ d1, d2 < D

6. Compute final corrections to Wi,±,d due to the final transverse derivatives.

2D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F 1D

i+ 1

2
ed1
− F 1D

i− 1

2
ed1
) (1.6)

d 6= d1, 0 ≤ d, d1 < D

3D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F

i+ 1

2
ed1 ,d2

− F
i− 1

2
ed1 ,d2

) (1.7)

−
∆t

2h
∇UW · (F

i+ 1

2
ed2 ,d1

− F
i− 1

2
ed2 ,d1

)

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D

4

7. Compute final estimate of fluxes.

F
n+ 1

2

i+ 1

2
ed
= R(W

n+ 1

2

i,+,d,W
n+ 1

2

i+ed,−,d
, d)

| RB(W
n+ 1

2

i,+,d, (i+
1

2
e
d)h, d)

| RB(W
n+ 1

2

i+ed,−,d
, (i+

1

2
e
d)h, d)

(1.8)

8. Update the solution using the divergence of the fluxes.

Un+1
i

= Un
i
−
∆t

h

D−1∑

d=0

(F
n+ 1

2

i+ 1

2
ed
− F

n+ 1

2

i− 1

2
ed
) (1.9)

1.2.2 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [CG85] combined with
characteristic limiting.

∆dWi = ζi δ
vL(∆d

4Wi,∆
d
−Wi,∆

d
+Wi) | ∆

d
2Wi | ∆

d
2Wi

∆d
4Wi =

2

3
((W −

1

4
∆d
2W)i+ed − (W +

1

4
∆d
2W)i−ed)

∆d
2Wi = δvL(∆̃d

2Wi,∆
d
−Wi,∆

d
+Wi) | ∆

d
−Wi | ∆

d
+Wi

∆̃d
2Wi =

1

2
(W n

i+ed
−W n

i−ed
)

∆d
−Wi = W n

i
−W n

i−ed
, ∆d

+Wi =W n
i+ed

−W n
i

At domain boundaries, ∆d
−Wi and ∆

d
+Wi may be overwritten by the application to provide

application dependent slopes at the boundaries (see section 2.1.4). There are two versions
of the van Leer limiter δvL(δWC , δWL, δWR) that are commonly used. One is to apply a
limiter to the differences in characteristic variables.

1. Compute expansion of one-sided and centered differences in characteristic variables.

αkC = lk · δWC

αkL = lk · δWL

αkR = lk · δWR

2. Apply van Leer limiter

αk =

{
min(|αkC |, 2|α

k
L |, 2|α

k
R |) if αkL · α

k
R > 0

0 otherwise

5

3. δvL =
∑

k α
krk

Here, lk = lk(W n
i
) and rk = rk(W n

i
).

For a variety of problems, it suffices to apply the van Leer limiter componentwise to
the differences. Formally, this can be obtain from the more general case above by taking
the matrices of left and right eigenvectors to be the identity.
Finally, we give the algorithm for computing the flattening coefficient ζi. WE assume

that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζi =

{
min
0≤d<D

ζd
i

if
∑

D−1
d=0 ∆

d
1u

d
i
< 0

1 otherwise
(1.10)

ζd
i
= min3(ζ̃

d, d)i

ζ̃d
i
= η(∆d

1pi, ∆
d
2pi, min3(K, d)i)

∆d
1pi =

1

2
(pi+ed − pi−ed) | pi − pi−ed | pi+ed − pi

∆d
2pi = (∆

d
1pi+ed +∆

d
1pi−ed) | 2∆

d
1pi | 2∆

d
1pi

The functions min3 and η are given below.

min3(K, d)i = min(Ki+ed , Ki, Ki−ed) | min(Ki, Ki−ed) | min(Ki+ed , Ki)

η(δp1, δp2, p0) =

0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0

1 otherwise

r0 = 0.75, r1 = 0.85, d = 0.33

6

Chapter 2

Interface

2.1 Class Hierarchy

The principal AMRGodunovUnsplit classes follow.

• AMRLevel<name>, the AMRLevel-derived class which is driven by the AMR class.
This class is application/problem dependent but is included here to document some
of the data members and functions which will probably be common to many appli-
cations.

• LevelGodunov, a class owned by AMRLevel<name>. LevelGodunov advances the
solution on a level and can exist outside the context of an AMR hierarchy. This
class makes possible Richardson extrapolation for error estimation (not currently
implemented).

• PatchGodunov, is a base class which encapsulates the operations required to ad-
vance a solution on a single patch/grid.

• PhysIBC, is a base class which encapsulates initial conditions and flux-based bound-
ary condtions.

2.1.1 Class AMRLevel<name>

AMRLevel<name> is the AMRLevel-derived class with which the AMR class will directly
interact. It’s user interface is therefore constrained by the AMRLevel interface. It is
also an application/problem dependent portion of the code but there are important data
members and function which will probably be part of any implementation. These are
documented here. The important data members of the AMRLevel<name> class are as
follows:

• LevelData<FArrayBox> m_UOld, m_UNew;

7

The conserved variables at old and new times. Both need to be kept because
subcycling in time requires temporal interpolation.

• Real m_cfl, m_dx;

CFL number and grid spacing for this level.

• FineInterp m_fineInterp;

Interpolation operator for refining data during regridding that were previously only
covered by coarser data.

• CoarseAverage m_coarse_average;

This is the averaging operator which replaces data on coarser levels with the average
of the data on this level where they coincide in space.

The AMRLevel<name> implementation of the AMRLevel currently does the following
for each of the important interface functions:

• Real advance()

This function advances the conserved variables by one time step. It calls the
LevelGodunov::step function. The time step returned by that function is stored
in a member data, m_dtNew.

• void postTimeStep()

This function calls refluxing from the next finer level and replaces its solution with
an average from the next finer level where they coincide.

• void regrid(const Vector<Box>& a_newGrids)

This function changes the union of rectangles over which the data is defined. At
places where the two sets of rectangles intersect, the data is copied from the previous
set of rectangles. At places where there was only data from the next coarser level,
piecewise linear interpolation is used to fill in the data.

• void initialData()

In this function the initial state is filled by calling the initial condition member data
of m_pathGodunov, namely getPhysIBC()->initialize().

• void computeDt()

This function returns the time step stored during the advance() call, m_dtNew.

• void computeInitialDt()

This function calculates the time step using the maximum wavespeed returned by a
LevelGodunov::getMaxWaveSpeed call. Given the maximum wavespeed, w, the

8

initial time step multiplier, K, and the grid spacing at this level, h, then the initial
time step, ∆t, is given by:

∆t = K
h

w
. (2.1)

• DisjointBoxLayout loadBalance(const Vector<Box>& a_grids)

Calls the Chombo load balancer to create a load balanced layout. This is returned.

2.1.2 Class LevelGodunov

LevelGodunov is a class owned by AMRLevel<name>. LevelGodunov advances the so-
lution on a level and can exist outside the context of an AMR hierarchy. This class makes
possible Richardson extrapolation for error estimation. The important functions of the
public interface of LevelGodunov are:

• void define(const DisjointBoxLayout& a_thisDisjointBoxLayout,

const DisjointBoxLayout& a_coarserDisjointBoxLayout,

const ProblemDomain& a_domain,

const int& a_refineCoarse,

const Real& a_dx,

const PatchGodunov* const a_patchGodunovFactory,

const bool& a_hasCoarser,

const bool& a_hasFiner);

Define the internal data structures. For the coarsest level, an empty DisjointBoxLay-
out is passed in for coaserDisjointBoxLayout.

– a_thisDisjointBoxLayout, a_coarserDisjointBoxLayout: The layouts
at this level and the next coarser level. For the coarsest level, an empty
DisjointBoxLayout is passed in for coarserDisjointBoxLayout.

– a_domain: The problem domain on this level.

– a_refineCoarse: The refinement ratio between this level and the next coarser
level.

– a_dx: The grid spacing on this level.

– a_patchGodunovFactory: The factory for the integrator which can advance
each patch/grid a time step. Boundary conditions and initial conditions are
also encapsulated in this object. Note: this object is its own factory.

– a_hasCoarser, a_hasFiner: This level has a coarser (or finer) level. These
are used when coarser or finer levels are needed or when data which exists
between levels (e.g., flux registers) is needed.

• Real step(LevelData<FArrayBox>& a_U,

LevelFluxRegister& a_coarserFluxRegister,

9

LevelFluxRegister& a_finerFluxRegister,

const LevelData<FArrayBox>& a_S,

const LevelData<FArrayBox>& a_UCoarseOld,

const Real& a_TCoarseOld,

const LevelData<FArrayBox>& a_UCoarseNew,

const Real& a_TCoarseNew,

const Real& a_time,

const Real& a_dt);

Advance the solution at this timeStep for one time step.

– a_U: The current solution at this level which will be advanced by a_dt to
a_time.

– a_coarserFluxRegister, a_finerFluxRegister: The flux registers be-
tween this level and the next coarser (or finer) levels.

– a_S: Source terms from the RHS of the system of PDEs being solved/integrated.
If there are no source terms a_S should be null constructed and not defined
(i.e. a_S’s define() function should not called).

– a_UCoarseOld, a_TCoarseOld: The solution at the next coarser level at the
old time, a_TCoarseOld.

– a_UCoarseNew, a_TCoarseNew: The solution at the next coarser level at the
new time, a_TCoarseNew.

– a_time: The time to which to advance the current solution. This should be
between a_TCoarseOld and a_TCoarseNew.

– a_dt: The time step at this level.

• Real getMaxWaveSpeed(const LevelData<FArrayBox>& a_U);

Return the maximum wave speed of the input a_U (the conserved variables) for
purposes of limiting the time step.

2.1.3 Class PatchGodunov

The base class PatchGodunov provides a skeleton for the application-dependent pieces of a
second-order unsplit Godunov method. The virtual functions are called by LevelGodunov,
which manages the overall assembly of the second-order unsplit fluxes. As part of
PatchGodunov, we provide some member functions (slope, flattening), that we expect
to be useful across applications, but which require either virtual functions or parameter
information to be supply by the user.
There are three types of grid variables that appear in the unsplit Godunov method in

section (1.2): conserved variables, primitive variables, fluxes, and source terms, denoted
below by U, W, F, and S, respectively. It is often convenient to have the number of
primitive variables and fluxes exceed the number of conserved variables. In the case of

10

primitive variables, redundant quantities are carried that parameterize the equation of
state in order to avoid multiple calls to that the equation of state function. In the case of
fluxes, it is often convenient to split the flux for some variables into multiple components,
e.g., dividing the momentum flux into advective and pressure terms. The API given here
provides the flexibility to support various possibilities.

The following virtual functions are part of the public interface. Some have default imple-
mentations which the user will not need to change for a variety of physical problems.

• virtual void define(ProblemDomain& a_domain,

const Real& a_dx);

Set the domain and grid spacing.

– a_domain: The problem domain index space.

– a_dx: The grid spacing.

• virtual void setPhysIBC(PhysIBC* a_bc);

Set the initial and boundary condtion pointer used by the integrator for the current
level.

– a_bc: The initial and boundary condition object for the current level.

• virtual PhysIBC* getPhysIBC() const;

Get (return) the initial and boundary condtion pointer used by the integrator.

• virtual void setSlopeParameters(bool a_fourthOrderSlopes,

bool a_flattening);

Set the parameters used for slope computations.

– a_fourthOrderSlopes: If true then compute 4th order slopes otherwise com-
pute 2nd order slopes.

– a_flattening: If a_fourthOrderSlopes is true and this is true then com-
pute and apply slope flattening. It is illegal for a_fourthOrderSlopes to be
false and a_flattening to be true.

• virtual bool useFourthOrderSlopes();

This returns true if 4th order slopes are being computed and false if 2nd order slopes
are being computed.

• virtual bool useFlattening();

This returns true slope flattening is being computed and applied.

11

• virtual void setArtificialViscosity(bool a_useArtificialViscosity,

Real a_artificialViscosity);

Set the parameters used for artificial viscosity.

– a_useArtificialViscosity: If true then artificial viscosity is applied.

– a_artificialViscosity: The artificial viscosity coefficient used in applying
artificial viscosity.

• virtual bool useArtificialViscosity();

This returns true if artificial viscosity is being used.

• virtual Real artificialViscosityCoefficient();

This returns the value of the artificial viscosity coefficient being used to apply arti-
ficial viscosity.

• virtual PatchGodunov* new_patchGodunov() = 0;

This is a factory method - this object is its own factory. It returns a pointer to new
PatchGodunov object with its boundary condtions defined. In addition to that the
slope parameters and the artificial viscosity parameters also need to be defined.

• virtual void setCurrentTime(const Time& a_time);

Set the current time.

– a_time: The current time.

• virtual void setCurrentBox(const Box& a_currentBox);

Set the box over which the conserved variables with be updated for this patch/grid.

– a_box: The box over which the conversed variables with be updated.

• virtual void updateState(FArrayBox& a_U,

FArrayBox a_F[SPACEDIM],

Real& a_maxWaveSpeed,

const FArrayBox& a_S,

const Real& a_dt,

const Box& a_box);

Update the conserved variables, return the fluxes used for this, and the maximum
wave speed in the updated solution.

– a_U: The conserved variables to be updated.

– a_F[]: The fluxes each of the faces used of update the conserved variables
(used for refluxing).

– a_maxWaveSpeed: The maximum wave speed for this patch/grid.

12

– a_S: The source terms - if there are no source terms this should be a null
constructed object.

– a_dt: The time step for this patch/grid.

– a_box: The box to be used for the computation/update.

• virtual Real getMaxWaveSpeed(const FArrayBox& a_U,

const Box& a_box) = 0;

Return the maximum wave speed on this patch/grid.

– a_U: The conserved variables.

– a_box: The box to be used for the computation.

• virtual int numConserved() const = 0;

Return the number of conserved variables.

• virtual Vector<string> stateNames();

Return the names of the variables. A default implementation is provided that puts in
generic names, i.e., ”variable#” where ”#” ranges from 0 to numConserved()−1.

• virtual int numFluxes() const = 0;

Return the number of flux variables. This can be greater than the number of
conserved variables if addition fluxes/face-centered quantities are computed.

The following virtual functions are not part of the public interface. Many are provided by
the user to implement portions of the computation specific to the physical problem being
solved. Some have default implementations which, in many cases, may not change from
one physical problem to the next.

• virtual bool isDefined() const;

Return true if the object has been completely defined. This means that the fol-
lowing have all been called: define(), setPhysIBC(), setSlopeParameters(),
setArtificialViscosity(), setCurrentTime(), and setCurrentBox().

• virtual int numPrimitives() const = 0;

Return the number of primitive variables. This may be greater than the number of
conserved variables if derived/redundant quantities are also stored for convenience.

• virtual int numSlopes() const = 0;

Return the number of slopes to be used in the calculation. Only slopes corresponding
to primitive variables in the interval 0 to numSlopes()− 1 are computed and only
primitive variables in that interval are updated using the slopes.

13

• virtual void consToPrim(FArrayBox& a_W,

const FArrayBox& a_U,

const Box& a_box) = 0;

Compute the primitive variables given the conserved variables.

– a_W: The primitive variables.

– a_U: The conserved variables.

– a_box: The box to be used for the computation.

• virtual void computeFlattening(FArrayBox& a_flattening,

const FArrayBox& a_W,

const Box& a_box);

Computes the flattening coefficient (1.10) and return it.

– a_flattening: The flattening coefficient.

– a_W: The primitive variables.

– a_box: The box to be used for the computation.

• virtual void slope(FArrayBox& a_dW,

const FArrayBox& a_W,

const FArrayBox& a_flattening,

const int& a_dir,

const Box& a_box);

Compute the slope, a_dW, of the primitive variables, a_W, using the algorithm de-
scribed in (1.2.2). 2nd or 4th order slopes are computed, with or within flattening
depending on user supplied parameters. The function applyLimiter() is used to
do slope limiting - it has a default implementation but this can be changed by the
user.

– a_dW: The slopes.

– a_W: The primitive variables.

– a_flattening: The flattening coefficient.

– a_dir: The direction in which to compute the slopes.

– a_box: The box to be used for the computation.

• virtual void normalPred(FArrayBox& a_WMinus,

FArrayBox& a_WPlus,

const FArrayBox& a_W,

const FArrayBox& a_dW,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

14

Extrapolate the primitive variables in the minus and plus direction using the slopes,
as in (1.1).

– a_WMinus, a_WPlus: The extrapolated primitive variables.

– a_W: The original primitive variables.

– a_dW: The primitive variable slopes.

– a_scale: The scaling for the extrapolation, ∆t
h
.

– a_dir: The direction in which to do the extrapolation.

– a_box: The box to be used for the computation.

• virtual void incrementWithSource(FArrayBox& a_W,

const FArrayBox& a_S,

const Real& a_scale,

const Box& a_box);

Increment the primitive variables using by the source term, as in (1.2). The default
implementation doesn’t change the primitive variables.

– a_W: The primitive variables.

– a_S: The source term.

– a_scale: The scaling for the extrapolation, ∆t
2
.

– a_box: The box to be used for the computation.

• virtual void riemann(FArrayBox& a_F,

const FArrayBox& a_WLeft,

const FArrayBox& a_WRight,

const int a_dir,

const Box& a_box) = 0;

Given left and right states at a face, compute a Riemann problem and generate
fluxes at the faces, as in (1.3, 1.5, 1.8).

– a_F: The computed fluxes.

– a_WLeft, a_WRight: The left and right states

– a_dir: The direction normal.

– a_box: The box to be used for the computation.

• virtual void updatePrim(FArrayBox& a_WMinus,

FArrayBox& a_WPlus,

const FArrayBox& a_F,

const Real a_scale,

const int a_dir,

const Box& a_box) = 0;

15

Given the conservative fluxes in a given direction, update the extrapolated primitive
variables, as in (1.4, 1.6, 1.7).

– a_WMinus, a_WPlus: The extrapolated primitive variables.

– a_F: The conservative fluxes.

– a_dW: The primitive variable slopes.

– a_scale: The scaling for the extrapolation - this varies depending on which
update is occurring.

– a_dir: The direction in which to do the extrapolation.

– a_box: The box to be used for the computation.

• virtual void artificialViscosity(FArrayBox& a_F,

const FArrayBox& a_U,

const FArrayBox& a_divVel,

const int a_dir,

const Box& a_box);

Update the fluxes using artificial viscosity in a given direction.

– a_F: The conservative fluxes.

– a_U: The conservative variables.

– a_divVel: The divergence of the velocity in direction a_dir.

– a_dir: The direction of the fluxes.

– a_box: The box to be used for the computation.

• virtual void updateCons(FArrayBox& a_U,

cosnt FArrayBox& a_F,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

Update the conserved variables using fluxes in a given direction, as in (1.9).

– a_U: The conserved variables.

– a_F: The conservative fluxes.

– a_scale: The scaling for the extrapolation, ∆t
h
.

– a_dir: The direction of the fluxes.

– a_box: The box to be used for the computation.

• virtual Interval velocityInterval() const = 0;

Return the interval of component indices of the primitive variables corresponding to
the velocities. This is used by computeFlattening() and divVel().

16

• virtual int pressureIndex() const = 0;

Return the component index of the primitive variable corresponding to the pressure.
This is used by computeFlattening().

• virtual int bulkModulusIndex() const = 0;

Return the component index of the primitive variable corresponding to the bulk
modulus. This is used by computeFlattening() to normalization shock strength.

• virtual void applyLimiter(FArrayBox& a_dW,

const FArrayBox& a_dWLeft,

const FArrayBox& a_dWRight,

const int a_dir,

const Box& a_box);

Given the center difference and the left and right differences in a direction, apply a
slope limiter to generate final slopes. A default implementation is provided which
implements a van Leer limiter without characteristic analysis, see section (1.2.2).
The user can change this by implementing their own version of this function. Called
by the default implementation of slope().

– a_dW: The center difference on input and limited slopes on output.

– a_dWLeft, a_dWRight: The left and right differences.

– a_dir: The direction of the differences.

– a_box: The box to be used for the computation.

• virtual void divVel(FArrayBox& a_divVel,

const FArrayBox& a_W,

const int a_dir,

const Box& a_box);

Compute the face centered divergence of the velocity.

– a_divVel: The face centered divergence of the velocity.

– a_W: The primitive variables (including the velocities).

– a_dir: The direction normal.

– a_box: The box to be used for the computation.

2.1.4 Class PhysIBC

PhysIBC is an interface class owned and used by PatchGodunov through which a user spec-
ifies the initial and boundary of conditions of their particular problem. These boundary con-
ditions are flux-based. PhysIBC contains as member data the mesh spacing (Real m_dx)
and the domain of computation (ProblemDomain m_domain). This object serves as its
own factory. The important user functions of PhysIBC are as follows.

17

• virtual void define(const ProblemDomain& a_domain

const Real& a_dx);

Define the internals of the class.

– a_domain: The problem domain.

– a_dx: The grid spacing.

• virtual PhysIBC* new_physIBC() = 0;

This is a factory method. It returns a new PhysIBC object.

• virtual void fluxBC(FArrayBox& a_F,

const FArrayBox& a_W,

const FArrayBox& a_Wextrap,

const int& a_dir,

const Side::LoHiSide& a_side,

const Real& a_time) = 0;

Return the flux boundary condtion on the boundary of the domain.

– a_F: The fluxes over the box. This values in the array that correspond to the
boundary faces of the domain are to be replaced with boundary values fluxes.

– a_Wextrap: The extrapolated value of the primitive variables to the a_side
of the cells in direction a_dir. This data is cell-centered.

– a_W: The primitive variables at the start of the time step. This data is cell-
centered.

– a_dir, a_side: The direction normal and the side of the domain where the
boundary condition fluxes are needed.

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void setBdrySlopes(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Real& a_time) = 0;

The boundary slopes are already set to one sided difference approximations on
entry. If this function doesn’t change them they will be used for the slopes at the
boundaries.

– a_dW: The slopes over the box.

– a_W: The primitive variables at the start of the time step.

– a_dir: The direction normal.

18

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void artViscBC(FArrayBox& a_F,

const FArrayBox& a_U,

const FArrayBox& a_divVel,

const int& a_dir,

const Real& a_time);

Apply artificial viscosity to the fluxes of the conserved variables at the boundaries.
The default implementation does nothing to the fluxes.

– a_F: The fluxes over the box. This values in the array that correspond to the
boundary faces of the domain are to be updated applying the artificial viscosity
at the boundaries.

– a_U: The conserved variables.

– a_divVel: The face centered divergence of the velocity.

– a_dir: The direction normal.

– a_time: The physical time of the problem - for time varying boundary condi-
tions.

• virtual void initialize(LevelData<FArrayBox>& a_U);

Fill the input with the intial conserved variables values of the problem.

– a_U: The conserved variables.

19

Bibliography

[CG85] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem
for real gases. J. Comput. Phys., 59:264, 1985.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[Col90] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation
laws. J. Comput. Phys., 87:171–200, 1990.

[Sal94] Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws.
J. Comput. Phys., 115:153–168, 1994.

20

